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Multiresolution analysis by infinitely differentiable compactly supported functions

N. DYN & A. RON

1. Introduction

Multiresolution analysis based on a compactly supported refinable function is limited to gen-

erators with a finite degree of smoothness. In this paper we discuss multiresolution analysis with

Cx-compactly supported generators. This is possible if the generator of each space is related to

the generator of the next finer space by a mask whose support grows linearly with the resolution

of the space. We consider here a particular instance of such analysis based on the up function of

Rvachev [Rv], defined as follows.

Let 2k, O 2-k,

andl er a denote the infinite convolution product

(1.1 o : X * X2*'-

"lh,' ' heTimp function, denoted here by o0. is given by

Qo = \o* a.

It fuliu~ws from its definition that the up function is supported on the interval [0, 2] and is infinitely

Sm,,thi~lt. Approximation properties of this function can be found in [Rv]. In [DDL] it is shown that

th,, ,l) function can be obtained as a limit of a non-stationary subdivision scheme, which employs

a•t a I,,vel k the mask of the stationary scheme that corresponds to the B-spline of degree k. As

ol)•(,rveod in [DDL], this is equivalent to the existence of a family of functions (¢k) satisfying an

iu~fijiie system of functional equations relating each Ck to (appropriately scaled) shifts of €k+l in

terin• of the above mentioned mask.

In• Section 2 we introduce the relevant functions (¢k)k°__ (the first of which is the above

nientwi,,ed up function), and use them to define the ladder of spaces So C Si C S2 C ... wvith

each .•k being the "span" of the 2-7Z-shifts of the corresponding Ck The resolution obtained

ii dhi- way is nonstationary in the sense that €• is not a dilate of its predecessor. We provide

the \~vwelet decomposition, based on the general theory of nonstationary multiresolution analysis

(4f [ll)R.2]. \Ve discuss the stability issue and show that the generator we choose for each wavelet

p,,,is stalble (and even linearly independent), but that the L 2 -stability bounds blow up with k
oir

a' rY- rate (no faster than) (7r/2)3 k. On the other hand we show in Section 3, using the general[]

th,,nry in [BDR1], that the least square approximation from (Sk) is spectral, namely that, for any []

r _> f). the L2(IR)-error of best approximation to f E Wi'• from Sk is O(2 -rk). This means thlat []

huigh resolut ion of a very smooth f can be achieved for a relatively small k, and in such a case the '

(hifiiulilty of the growth of the stability constants may be less of a problem. It is thus possible that

the i,,,ltiresolution analysis based on the up function that we present here might be practically "

suit able for tho decomposition of very smooth functions. -*.........

IDist I i:,:.!a2a , 0



In the paper, we use, for a compactly supported function f : R --- C, and a function g defined

(at least) on 2 -kuZ, the notation

(1.2) f*kg:- Z f(-m).(J
jE2-&Z

2. Wavelet decompositions

The up function provides an interesting example of wavelet decompositions via multiresolution.

A general discussion of these topics can be found in [BDR2], and is certainly beyond the scope of

this paper.

.\ multiresolution begins with a sequence (Mk)kEZ+ C L 2 (IR). For each k, one denotes by

• rii,, smallest closed L2-subspace that contains all the funct'or s

(2.1 (-j), j E2-kZ.

"T1'h. nstedness assumption

(2.2) Sk C Sk+,, k E 2Z+

il in the essence of the process. With (2.2) in hand, one defines the wavelet space Vk. to be the

o,,Il h,,gonal complement of Sk in Sk+l,

(2.31 Il7k := Sk+1 e Sk.

Lnidr mild conditions on the sequence (0k) (cf. section 4 of [BDR2]; these conditions are always

s.itisfid for compactly supported (00k), which will be the case here) the wavelet spaces provide an

ortho,,gonal decomposition of L2(IR) e So, and the subsequent task is then to find efficient (more

p)r(,(isly stable) methods for computing the orthogonal projection Pkf of a given f E L2 (IR) on
each of the wavelet spaces. The attraction in these decompositions is that (in many examples) the

infifrmation on f recorded by Pkf is considered to be "finer" as k increases.

Iti the original formulation of multiresolution, [Ma], [Me], it was assumed that the ladder (Sk) is

stationary. namely, that each Sk+l is the 2-dilate of Sk. Analysis of noistationary decompositions

(ci It, found in [BDR2], with the guiding example there being exponential B-splines. The wavelet

decompositions that correspond to the up function are iionstationary as well, still they form a
(liff(,r,,et variant in this class. We will elaborate on that point in the sequel.

Our sequence (0k)k can be defined as follows. First, we recall the definition of a given in (1.1).

\\'ith 13k tho cardinal B-spline of degree k (i.e, with integer breakpoints and with support [0, k + i]).

(2. I Ok := (Bk * a)( 2 k_).

2



Note that supp kk = [0, (k + 2 )/ 2 k]. The spaces (Sk) are defined as in the beginning of this section,
with respect to the present choice of (0k). Our discussion here is developed in two steps. First, we

will observe below that the spaces (Sk) satisfy the npstedness assumption (2.2). Knowing therefore
that the corresponding wavelets spaces (W-Vk)kEz are well-defined, we will then consider the problem

of finding stable generators for the associated wavelet spaces.

Since

(xk * f)(2-) = Xk+1 * (f(2.)),

and

Bk = Xo * ... * XO,

(k+l)-times

we find that

Ok Xk * ... * Xk *Xk+l *

(k+l)-times

';tbistituting k - 1 for k we get

Ok-I = k- *.. * Xk-I *Xk *Xk+ ....

k-times

"ilhrfore, a refinement equation that expresses Ok-1 as a linear combination of the translates

o, ,, will be the same as the one that connects the splines

Xk-1*...*Xk-1, and Xk*...Xk.

k-times k-times

T'I'-' splines are (up to the factors 2k-1 and 2 k respectively) scales of the B-spline Bk-1, and the

i'diiin,,ent equation becomes identical to the well-known one for B-splines. Indeed, the solution Ak
f,,r th,, convolution equation

Ok-1 = Ok*k Ak

i- th, 4-fold convolution product of the sequence

1kj) 1/2, j =0, 2-
A°(J):= 0. j E -k(TZ\{0, 1}),

fh:l ,f'ves the equation
U-= Yk*'Ao.

It, I lrir transform has the form

S= + e 1  
)k.A k 2

"I, (P-c,,ichiid. in terms of Fourier transforms we obtained the following refinement equation:
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Corollary 2.5.

Since Ak is finitely supported, t!ke corollary shows that 4)k-1 can be expressed as a finite linear

combination of 2-'7Z-shifts of 01,, thereby proving the required nestedness property. Consequently,

the corresponding wavelets spaces are well-defined. Note that, while (0k)k satisfies the same refine-

ment equations that are being satisfied by B-splines, the degree of the associated B-spline changes

with k. In particular, the size of the support of the mask sequence Ak grows linearly with k.

In contrast, the nonstationary decompositions associated with exponential B-splines (cf. [BDR2:

j6].[DL]) employ masks with uniformly bounded support.

Corollary 2.5 allows us to apply standard wavelet techniques (cf. [CW], [JM], [BDR2]). In

partic,'lar, it is known [BDR2] that the function ik defined by

(2.6i 1k-.(W) := e-iu'12k Ak(W + 2k1r).Tk(W)Ok(W),

wit 11

(2.7' Trk( I): Ik(w + j)12

jE2ir2k2

g.•iwrtes II'k in the sense that the 2-kZZ-shifts of O'k are fundamental in Wk.. A standard application

,4 l'n,,son's summation formnula yields that 7k is a trigonometric polynomial with frequencies in

(2-'1/) n [-(k + 1)/2k, (k + 1)/2k]. Some straightforward computation then implies that Ok-1 is

.s,,l)j)frted in an interval of length (k + 1 )/ 2 k-2 which is exactly twice the size of the support of
Clý -I t

N,)w, we turn our attention to the stability question. The generator Vkk is called stable if

thi, rtriction Rk of Ok*' to e2.(7Z) is well-defined, bounded and boundedly invertible. Since the

d(lecnit)osition here is nonstationary, it is also important to make sure that the norms IlRkII and

11 l. are bounded independently of k (cf. [JM) and [BDR3] for detailed discussion of the stability
llroilt,,ui).

It is known (cf. section 5 of [BDR2] and especially Remark 5.8 there) that ,k is a stable

go,•ermtor of 117k if each Ok' is a stable generator of Sk,, k' E 2Z+, and further, ijRkji and IIR 1Il1
a r, hounded by rational expressions in IJTk 1,j IlIT;,'l, k' = k, k + 1, with TA, being the restriction

t, i) of Ok*', and with the rational expressions being independent of k:

Proposition 2.8. ?ik in (2.6) is a stable generator of Wk ifV , , k' = k k + 1, is a stable generator

O( .5'. Further, the stability constants associated with (70k)k are uniformly bounded if the same

hold, t6r for the stability constants of(60)k, since

IIjhRkl1 IIIR S co,,stl II llllT .'Ill(l i+,ll TA Z4ll .ll )

\We prove that each Ok is a stable generator of 5 •k with the aid of the following well-known

,1,.,1,lt (cf. [SF], [DM], [.JIM and [FIDR3]).
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Result 2.9. Let 4 be a compactly supported L2(IR)-function. Then the 2-kTZ-shifts of 4 are
L2-stable if and only if for every 0 E IR, there exists j E 2k+lr"Z such that 4(0 +j) 0 0. In other
words. the 2-kTZ,-shifts of 4) are stable if and only if 4 does not have a 2k+17r27-periodic zero.

We show below that the entire function &) has no 2k+l -rZ-periodic zero in the complex domain
(. This property is known to be equivalent to ok*' being injective, a property which is usually
referred to as the linear independence of the 2 -77Z-shifts of Ok (cf. [Ro] for details). In view of
Result 2.9, this will certainly imply that Ok is a stable generator of Sk.

Corollary 2.10. The 2-k2Z-shifts of O)k are linearly independent, hence form a stable basis for the

spa' 5Yk that they generate. However, the 2-k7Z-shifts Of Ok, are not L2-stable, whenever k' < k.

Proof. By Corollary 2.5, we have

6k' = -Ak'+ 1 k'+1 •

Since it k'+l is 2k'+2 r-periodic and k' < k. it is also 2k+1 r-periodic, hence, in view of Result 2.9,
the •;•bilitv of the 2-k2Z-shifts of Ok'. k' < k, forces Ak,+1 to have no zeros (on 1). However,

*k,+l vanishes at 2k'+1Ir, and this proves the second statement of the corollary.
H'or the linear independence claim, we first remark that basic convergence criteria (cf. e.g.

'Tli,,em- 15.4 of [Ru]) show that Ok vanishes at a point (if and) only if one of its factors •.

%afli-,,ws there. Secondly, we observe that since , .(w) = 2 i Jf; e-wt dt,

x3 (w) = 0 w E 2J+lrrZ\O.

lit pairticular, for j < j', ýj.(w) = 0 if .i,(w) = 0. Since 4 k is the product of factors of the form

. ,r j > k, we conclude that the (complex) zeros of Ck are identical with these of ý k* Since

supp \k = [. 2 -k], the 2 -kZZ-shifts of this function are trivially linearly independent, hence ý

CaInnot have a 2k+I-rZ-periodic zero. Therefore, &k does not have such a zero, and consequently
it, 2-i 71-shifts are linearly independent as well. 4

\While the 2-k7Z-shifts of Ok are linearly independent hence stable, the stability constants
are n•t uniformly bounded. This assertion is based on the next result, which also provides some
(,iim;ite on the growth of these constants as k - oc.

Proposition 2.11. Let Tk denote the restriction of 6k*' to t2 (2Z). Then

(a) IFrkjIT;'II 00-
k-oo

,i,) jFkjjljTý- ll _< const(r/2 )k

Proof. We recall ([BDR2]) that

(2. 12 IT 1112 = SUPWER ZC(E2k+1 77 16k(W + 0)12 _TSUPED1 EaE2, I(bka)(W + a)12
inf EIR- _,Z,•E2k+,,-7Z [-k(I + 0)12 - infwE Z:O.E2r (Bka)(w + O)W2
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Since, for each k, Bk(O) = 1, and also a(O) = 1, we condude that the numerator of the most right

expression in (2.12) is > 1. As for the denominator, we observe that

Ae i - e i 111

and hatIe_.W 11< 1 on IR\0.

IwI
This means that, for any fixed 0 j4 IwI < r, and any a E 2r2Z, the non-negative sequence

(I( BIh)(w + a)12)k converges to zero monotonely as k --- oo. Therefore, for such w,

(2.13) im E I(B3k)(w + Ct) 2 = 0.
k-- oo

alE2?r

Thik proves (a).

Since we have jus. proved that E-E2,, I(Bka)(w + a)12 is non-increasing with k, we can
f,,timkite

sup yj I(bk•)(W + a)12 < sup E I(bo0)(w + a)12 = const.
WEU aE 2IR wEIRfE-

In ;ahl1tion. for w E [-7r, 7r], we estimate

inf 1 f(Bka°)(w+a)1
2  > la(w) (2 le-iw l)2k • const (3 2  ,

wER kE27 ir WI 7\rj

wlv'wr'. in the last inequality, we have used the facts that (i): 6 vanishes nowhere on [-.r,(ii):

tho minimal value of le _1 (assumed at iv = ir) is 2/7r.

Iakiii (b)) is then obtained by combining the estimates above.

F~romi Proposition 2.8, we conclude that the stability constants associated with the wavelets

k ),grow no faster than 0((7,/2 )3 k).

3. Approximation Orders

A;a natural continuation of the previous discussion, we consider L,,-approximation orders of

11" (Sk) generated by ((ýk) of (2.4). Given r > 0, let 1V,' be the usual potential space

(I~ := iV f E L2(]R ) :IifIjjjw;: (27-,)-'/'11(1 + I . fI < OO}.

\\e ay hat(Sk)k (or, (000~ has approximation order r > 0 (in the L -norm) if

(32' EkMf := distL,(R)(f, SkO

(313 EkMf •5 constr JlfIjjw,-2~r Vf E W'V, V sufficiently large k.
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[ere. -,sufficiently large" may depend on r, but not on f. If, in addition to the above,

3.4) 2krEk(f) -+ 0, as k - oo, Vf E W2,

'e say that (Sk) has density order r. The notion of density orders extends to r = 0; in such a

ase the definition is reduced to the requirement that

Ek(f) -- 0, Vf E L2(]R).

Ilthough it is not obvious from the definition, (45k)k has all approximation orders < j whenever it

as the approximation order j. We will show that the approximation by (Sk)k is spectral which

ieans, by definition, that (kk)k has all positive approximation orders.

Our precise result is as follows:

'heorem 3.5. The sequence of spaces (Sk) has density order r for every r > 0.

The fact that all approximation orders are obtained is plausible, since each €k is obtained by

an,,thing Bk(2k.), and for a fixed j, the functions (Bj(2k.))k are well-known to have approximation

r(ler j + 1. However, the fact that we obtain even all density orders seems to be less expected.

urt lhirmore, in what follows we show that for a very smooth function f (whose Fourier transform

,,;vw exponentially), Ek(f) decays exponentially, as well.
\ general comprehensive discussion of L2-approximation orders and density orders for shift

tvdai;,nt spaces is given in [BDR1]. Instead of deriving Theorem 3.5 from those results, we will

pIp 1Y the approach taken there to our special (and much simpler) case. This will result at tighter

,tiiiialtes for Ek(f). Similar results in other p-norms are available as well. For example, spectral

prioxiniation in the uniform norm can be proved by employing the results of [BR].
Our analysis of the approximation orders goes as follows: let I = [-t, t] C [-r, 7r]. In order to

tiiiate Ek(f), we localize f on the Fourier domain. Precisely, we multiply f by the characteristic

I1(1i, n 11k of the interval 2'I. to obtain the function
16 YJk := 7k

11( it-,- the straightforward bound

[', Ek(f) < Ek(gk) + II((0 -r)f)VI•

V, refer to the first term in the above sum as the approximation error, or the projection

rror. and to the second term as the truncation error.

lhe decay rate of the truncation error is clearly independent of (0k), and depends on the

1n,,,t hness class of f. In particular, the following can be easily proved (cf. [BDR1]):

,emma 3.8. Let I := [-t, t] be some neighborhood of the origin, and let 77k be the characteristic

1lirtin of 2 k1 . Let f E It,", r > 0. Then

II(( 1 - -k )f)"IL2(n) < t--k,2If 1IV,-k(f, t),

-11,t` 0 <_ rk(f, t) < 1 and converges to 0 as k tends to oc.

hii view of Lemma 3.8, a proof of Theorem 3.5 requires the study of the behaviour of the

roJection error. To estimate this, we employ the following result from [BDR1]. In what follows

,, 1-,V, for f E L2(IR), the notation S(f) to denote the smallest closed subspace of L2(IR) that

)tit.ihis all the shifts of f.



Result 3.9. Let • be a function in L2 and let 9 E L2 be a function whose Fourier transform g is

supported in I C [-r, ir]. Let Pg be the orthogonal projection of g on S(ý). Then

11g - Pgl 2L2(R) = (27r)-'/2 112 gAfL 2(I),

where

A C 2 : = 1 -

Ej•2r I0(- + A)1"

We intend to apply the last result to the function g := gk(2-k.), with gk as in (3.6). We first
note that, for any f E L2 (IR), by dilating,

Ek(f) = 2-k/2 dist(f(2-k.), S(Ok( 2 -k.))).

Thui.. we can use Result 3.9 with respect to -:- €k(2-k_) = Bk * U. We estimate Aý as follows.

W'O, fitst denote

>21( I+ij)12.
j E2 72Z \0

'NI Z' II'2
A2 <-4

kP_ + M2 - -11-

I(W)1 -= IBk( w)JIa(W) = l'k(W)IIW-fkla(w)I,

wvit h-r. a 2-'-periodic trigonometric polynomial. We conclude that, for w E I,

"Ml•(w)'2 - E ,(w +j)[- 1 I/(')~I~wj/~wI

12 s ( +) 'IIL.(I) E Ia(W + j)12.

jE2-\O jE2,r2Z\O

Situ,, "r E C'(IR), F is rapidly decaying, and therefore

3 1(w + J))12 =: q(W) 2

jE2,r2Z \O

c~ovl,,ges to a smooth bounded function (the boundedness can be proved as follows: if we add to

th', .mn the summand for j = 0, we get a periodic function which is bounded due to its continuity.

Sili,' ,ach summand, including the j = 0 one, is clearly bounded, it follows that the above sum is,

I I•,Ce u" E I = [-t, t], infJE2.,rz\0 Iw + jI = 27r - t, and we obtain the following estimate

3. It), Adw) • (2-, - t)-klwI IIq/alIL,(!) =: const (2r - t)-Ilwlk.
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Consequently, since the Fourier transforms of f( 2 -k.) and gk(2-k.) coincide on I, we have for k'> r

(27r)" 2 Ek(gk) = 2 -k/2 lf(ý-k.)AhL2u()

<5111" I-AthL(t) 2 k/2 11 1 . Irf(2 k)iIL(I)

<const (27r - t)-1tk-r11 12 -k Irf(')IILoIR

<const (2r - t)-ktk-r2-krIlfIlw;.

Theorem 3.5 now follows when combining the last estimate (say, with t := 1) for the projection

error. with the estimate for the truncation error from Lemma 3.8.

Finally, for very smooth functions, better rates can be derived. First, upon substituting r = k,
t= in the above estimate and in Lemma 3.8, we obtain:

Corollary 3.11. If f E W2 for some k then

Ek(f) • constr-kI1fIwk2- 2 .

('oncrete improvements of the rates of Theorem 3.5 require knowledge on the rate of growth

Of (11f w1 ) ÷kEZz. A typical example follows.

Example 3.12. Assume that f is so smooth so that its Fourier transform decays exponentially

at x. Precisely, assume that If(w)l _< conste-'Iwl, for some positive a. Then I1f 1wýk = O((k +

I ) a and therefore we conclude from the last theorem that

Ek(f) < const (k + 1)!(ra)-k2-k2,

and lierefore the error decays in this case exponentially in 2k.
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